Features

- a. Single Power Supply 3.3V
- b. Small Form Factor Pluggable (SFP) MSA Compatible
- c. Single Fiber Bi-Direction LC Connector
- d. Hot Pluggable Capability
- e. Compliant With ROHS Standard

Applications

- a. Fiber Channel
- b. Gigabit Ethernet
- c. Switch to Switch Interface

■ Absolute maximum ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	+3.6	V
Voltage at any Input Pin	V_{IN}	0	Vcc	V
Power supply current	I _{CC}	-	300	mA

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур	Max.	Unit	
Operating Temperature	T _{op1}	0	-	+70	ŝ	
Operating Temperature	T _{op2}	-40	-	+85	C	
Supply Voltage	V _{CC}	3.1	3.3	3.5	V	
Data Rate	-	-	1250	-	Mb/s	

Operating Conditions

Transmitter $(T=25^{\circ}C, V_{CC}=3.1\sim3.5V)$

Parameter	Symbol		Min.	Тур.	Max.	Unit
			1280	1310	1360	10.100
Central Wavelength		$\lambda_{ m C}$	1480	1490	1500	11111
			1520	1550	1580	
Spectral Width	43	DFB@-20dB	-	-	1	nm
Spectral width	$\Delta \lambda$	FP@RMS	-	-	3	
Output Power	Ро		Reference "Ordering Information"			
Extinction Ratio		ER	9	-	-	dB
Differential Input Voltage		V _{DIFF}	500	-	2400	mV
TX Disable Input Voltage Low	TX_DISABLEL		0	-	0.5	V
TX Disable Input Voltage High	TX_DISABLEH		2.0	-	V _{CC}	V

Transmit Fault Output Low	TX_FAULTL	0	-	0.8	V
Transmit Fault Output High	TX_FAULTH	2.0	-	V _{CC}	V
Eye Diagram	Compliance with ITU-T G.957				

Receiver (T=25°C, Vcc=3.1~3.5V)

Parameter		Symbol	Min.	Тур.	Max.	Unit
			1260	1310	1360	
wavelength Kange	5	λ	1480	1490	1500	11111
			1520	1550	1580	
MIN Input Dowor	10/20KM				-21	
(Sonsitivity)	30/40KM	P _{MIN}	-	-	-24	dBm
(Sensitivity)	60KM				-26	
MAX. Input Power (Saturation)		P _{MAX}	-3	-	-	dBm
Signal Detect-Asserted		P _A	-	-	P _{MIN}	dBm
Signal Detect-Deasse	rted	P _D	-40	-	-	dBm
Signal Detect Hysteresis		P _{HYS}	1	-	5	dB
Receiver Loss of Signal Output Voltage-Low		RX_LOSL	0	-	0.8	V
Receiver Loss of Signal Voltage-High	RX_LOSH	2.0	-	V _{CC}	V	

EEPROM Description

The SFP serial ID provides access to sophisticated identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. The serial interface uses the 2-wire serial CMOS E^2 PROM protocol defined for the ATMEL AT24C01A/02/04 family of components.

When the serial protocol is activated, the host generates the serial clock signal (SCL, Mod Def 1). The positive edge clocks data into those segments of the E^2 PROM that are not write-protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver.

The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Address	Size (Bytes)	Name of Field	Hex	Description of Field
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4

EEPROM Serial ID Memory Contents (A0h)

2	1	Connector	07	LC
3—10	8	Transceiver	xx xx xx xx xx xx xx xx xx	Transceiver Code
11	1	Encoding	01	8B10B
12	1	BR, nominal	0D	1.25Gbps
13	1	Reserved	00	
14	1	Length(9um)-km	XX	Units of km
15	1	Length (9um)	XX	Units of 100 m
16	1	Length (50um)	00	
17	1	Length (62.5um)	00	
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	Vendor name	41 4C 4C 52 41 59 20 49 4E 43 2E 20 20 20 20 20	"ALLRAY INC. "(ASC II)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
			41 54 52 2D 53 xx xx xx	"ATD SLOVY " (ASC II)
40 55	16	Vandar DN	xx 20 20 20 20 20 20 20 20	AIR-SIUXA (ASCII)
40-55	10	vendor i iv	41 54 52 2D 53 xx xx xx	"ATR-S10XXT" (ASC II)
			xx 54 20 20 20 20 20 20 20	
56—59	4	Vendor rev	31 2E 32 20	ASC II ("31 2E 32 20" means 1.2 revision)
60-61	2	Wavelength	XX XX	Laser wavelength
62	1	Reserved	00	
63	1	CC BASE	XX	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
68—83	16	Vendor SN	xx xx xx xx xx xx xx xx xx	SN: xxxxxxxx (ASC [])
			XX XX XX XX XX XX XX XX XX	2 (
84—91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes), Month (2 bytes), Day (2 bytes) (ASC II)
92—94	3	Reserved	00 00 00	
95	1	CC_EXT	XX	Check sum of bytes 64 - 94
96—127	32	Vendor specific		Vendor Specific EEPROM
128-255	128	Reserved		Reserved for future use.

Note: 1.The "xx" byte should be filled in according to practical case.

2. Note that, A0H is readable and writeable.

Block Diagram of Transceiver

■ Pin Assignment and Function Definitions

It is the responsibility of the system integrator to assure that no thermal, energy, or voltage hazard exists during the hot-plug-unplug sequence. It is also the responsibility of the system integrator and end-user to minimize static electricity and the probability of ESD events by careful design.

Pins Assignment

Function definition

Pin No.	Name	Function	Plug Seq.	Notes

1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

1. TX Fault is an open collector output, which should be pulled up with a $4.7K \sim 10K\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K \sim 10K\Omega$ resistor. Its states are:

Low (0~0.8V): Transmitter on

(>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled

Open: Transmitter Disabled.

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7K \sim 10K\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present.

MOD-DEF 1 is the clock line of two wire serial interface for serial ID.

MOD-DEF 2 is the data line of two wire serial interface for serial ID.

4. LOS is an open collector output, which should be pulled up with a $4.7K \sim 10K\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.

5. These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.

6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

SFP Host PCB Mechanical Layout

Recommended Host Board Supply Filtering Network

Example SFP Host Board Schematic

■ Mechanical(Units in mm)

Regulatory Compliance

Feature		Standard	Performance	Mark
	ESD	EN61000-6-1:2007	CLASS B	
CE-EMC	EMI	EN61000-6-3: 2011	CLASS B	
		EN55022/A1:2007	CLASS D	
CEIN	VD	EN60825-1:2007	CLASS 1	
	٧D	EN60825-2:2010	CLASS I	
C-TICK		AS/NZS CISPR 22:2009	CLASS B	C
		CFR TITLE 21 chapter 1	The laser radiation power	
FDA		Subchapter J,CFR1040.10	is under the limit of class 1	
		and 1040.11	laser product	
RoH	S	2011-65-EU	Compatible with standards	
REAC	CH	SVHC	Compatible with standards	

Ordering Information

Part No.	Wavelength (nm)	Temp. (°C)	TX Power (dBm)	RX Sens(Max) (dBm)	Distance (km)
HK-1.25G-20-1310	TX1310nm FP/RX1550nm	0 to 70	-6 to -1	-21	20
HK-1.25G-20-1550	TX1550nmDFB/RX1310nm	0 to 70	-9 to -1	-21	20

Revision History:		July 2, 2015	Rev. B
Previous Version:			
Page		Subjects (major changes s	since last revision)
Prepared By:	Aaron Zhang		
Approved By:	Ray Jian		